Как в экселе посчитать коэффициент
Перейти к содержимому

Как в экселе посчитать коэффициент

  • автор:

Как рассчитать коэффициент вариации в Excel

Как рассчитать коэффициент вариации в Excel

Коэффициент вариации , часто обозначаемый как CV, представляет собой способ измерения степени разброса значений в наборе данных по отношению к среднему значению. Он рассчитывается как:

CV = σ / μ

σ = стандартное отклонение набора данных

μ = среднее значение набора данных

Проще говоря, коэффициент вариации — это просто отношение между стандартным отклонением и средним значением.

Когда используется коэффициент вариации?

Коэффициент вариации часто используется для сравнения вариации между двумя разными наборами данных.

В реальном мире он часто используется в финансах для сравнения среднего ожидаемого дохода от инвестиций с ожидаемым стандартным отклонением инвестиций. Это позволяет инвесторам сравнивать соотношение риска и доходности между инвестициями.

Например, предположим, что инвестор рассматривает возможность инвестирования в следующие два взаимных фонда:

Взаимный фонд A: среднее = 7%, стандартное отклонение = 12,4%

Взаимный фонд B: среднее = 5%, стандартное отклонение = 8,2%

При расчете коэффициента вариации для каждого фонда инвестор находит:

CV для взаимного фонда A = 12,4% / 7% = 1,77

CV для взаимного фонда B = 8,2% / 5% = 1,64

Поскольку взаимный фонд B имеет более низкий коэффициент вариации, он предлагает лучшую среднюю доходность по сравнению со стандартным отклонением.

Как рассчитать коэффициент вариации в Excel

В Excel нет встроенной формулы для расчета коэффициента вариации для набора данных, но, к счастью, его относительно легко вычислить, используя пару простых формул. В следующем примере показано, как рассчитать коэффициент вариации для заданного набора данных.

Предположим, у нас есть следующий набор данных, содержащий экзаменационные оценки 20 студентов:

Пример набора данных в Excel

Чтобы рассчитать коэффициент вариации для этого набора данных, нам нужно знать только два числа: среднее значение и стандартное отклонение. Их можно рассчитать по следующим формулам:

Среднее значение: =СРЕДНЕЕ(A2:A21)

Стандартное отклонение: =СТАНДОТКЛОН(A2:A21)

Расчет коэффициента вариации для набора данных в Excel

Чтобы вычислить коэффициент вариации, мы затем делим стандартное отклонение на среднее значение:

Коэффициент вариации в Excel

Коэффициент вариации оказывается равным 0,0864 .

Обратите внимание, что мы также могли бы использовать только одну формулу для расчета CV:

Формула коэффициента вариации в Excel

Это приводит к тому же CV 0,0864 .

Расчет коэффициента корреляции Пирсона в Excell

Для того, чтобы рассчитать коэффициент корреляции Пирсона в Excell необходимо сделать следующие шаги:

1.Вносим значения для двух переменных в таблицу (Например Переменная 1 и Переменная 2)

2. Ставим курсор в пустую ячейку

3. На панеле инструментов нажимаем кнопку fx (вставить формулу)

4. В открывшемся окне «Мастер функций» в поле «Категории» выбираем Полный алфавитный перечень

5. Затем в поле «Выберите функцию» находим функцию ПИРСОН

5.1. Нажимаем Ок

6. В открывшемся окне «Аргументы функции» в поле Массив1 вносим номера ячеек, содержащие значения Переменной 1, в поле Массив2 вносим номера ячеек, содержащие значения Переменной2.

7. Нажимаем Ок

8. Смотрим получившийся результат

Как рассчитать коэффициенты в Excel (с примером)

Как рассчитать коэффициенты в Excel (с примером)

Соотношение используется для сравнения двух чисел. Соотношения полезны для понимания того, насколько велико одно значение по сравнению с другим.

Например, предположим, что A = 40 и B = 10.

Чтобы рассчитать отношение A к B, мы можем использовать следующий двухэтапный процесс:

Шаг 1 : Найдите наибольший общий делитель (наибольшее целое число, на которое будет делиться каждое значение)

  • Наибольшее значение, которое будет делиться как на 40, так и на 10, равно 10 .

Шаг 2 : Разделите каждое значение на наибольший общий делитель и запишите результат в виде A:B.

  • Отношение 40 к 10 будет записано как 4:1 .

Чтобы вычислить соотношение между любыми двумя числами в Excel, мы можем использовать следующую формулу:

= A2 /GCD( A2 , B2 )&":"& B2 /GCD( A2 , B2 ) 

Эта конкретная формула вычисляет отношение между значением в ячейке A2 и значением в ячейке B2 , используя функцию НОД в Excel для автоматического поиска наибольшего общего делителя между двумя значениями.

В следующем примере показано, как использовать эту функцию на практике.

Пример: расчет коэффициентов в Excel

Предположим, у нас есть следующие два списка значений в Excel:

Предположим, мы хотели бы рассчитать отношение значения 1 к значению 2 в каждой строке.

Мы можем ввести следующую формулу в ячейку C2 :

= A2 /GCD( A2 , B2 )&":"& B2 /GCD( A2 , B2 ) 

На следующем снимке экрана показано, как использовать эту формулу на практике:

Оказывается, наибольший общий делитель 12 и 5 равен 1. Таким образом, когда мы делим каждое значение на 1, у нас просто остается отношение 12:5 .

Мы можем скопировать и вставить эту формулу в ячейку C2 до каждой оставшейся ячейки в столбце C, чтобы вычислить соотношение для двух значений в каждой строке:

рассчитать соотношение в Excel

Вот как интерпретировать результаты:

  • Соотношение между 12 и 5 составляет 12:5 .
  • Соотношение между 40 и 10 составляет 4:1 .
  • Соотношение между 20 и 8 составляет 5:2 .

Примечание.Полную документацию по функции НОД в Excel можно найти здесь .

Дополнительные ресурсы

В следующих руководствах объясняется, как выполнять другие распространенные задачи в Excel:

Коэффициент вариации: формула и расчет в Excel и интерпретация результатов

Коэффициент вариации в статистике применяется для сравнения разброса двух случайных величин с разными единицами измерения относительно ожидаемого значения. В итоге можно получить сопоставимые результаты. Показатель наглядно иллюстрирует однородность временного ряда.

Коэффициент вариации используется также инвесторами при портфельном анализе в качестве количественного показателя риска, связанного с вложением средств в определенные активы. Особенно эффективен в ситуации, когда у активов разная доходность и различный уровень риска. К примеру, у одного актива высокая ожидаемая доходность, а у другого – низкий уровень риска.

Как рассчитать коэффициент вариации в Excel

Коэффициент вариации представляет собой отношение среднеквадратического отклонения к среднему арифметическому. Для расчета в статистике используется следующая формула:

  • CV – коэффициент вариации;
  • σ – среднеквадратическое отклонение по выборке;
  • ǩ – среднеарифметическое значение разброса значений.

Коэффициент вариации позволяет сравнить риск инвестирования и доходность двух и более портфелей активов. Причем последние могут существенно отличаться. То есть показатель увязывает риск и доходность. Позволяет оценить отношение между среднеквадратическим отклонением и ожидаемой доходностью в относительном выражении. Соответственно, сопоставить полученные результаты.

При принятии инвестиционного решения необходимо учитывать следующий момент: когда ожидаемая доходность актива близка к 0, коэффициент вариации может получиться большим. Причем показатель значительно меняется при незначительном изменении доходности.

В Excel не существует встроенной функции для расчета коэффициента вариации. Но можно найти частное от стандартного отклонения и среднего арифметического значения. Рассмотрим на примере.

Доходность двух ценных бумаг за предыдущие пять лет:

Доходность по ценным бумагам.

Наглядно это можно продемонстрировать на графике:

Формула.

Обычно показатель выражается в процентах. Поэтому для ячеек с результатами установлен процентный формат.

Значение коэффициента для компании А – 33%, что свидетельствует об относительной однородности ряда. Формула расчета коэффициента вариации в Excel:

График.

Сравните: для компании В коэффициент вариации составил 50%: ряд не является однородным, данные значительно разбросаны относительно среднего значения.

Интерпретация результатов

Прежде чем включить в инвестиционный портфель дополнительный актив, финансовый аналитик должен обосновать свое решение. Один из способов – расчет коэффициента вариации.

Ожидаемая доходность ценных бумаг составит:

СРЗНАЧ.

Среднеквадратическое отклонение доходности для активов компании А и В составляет:

СТАНДОТКЛОН.

Ценные бумаги компании В имеют более высокую ожидаемую доходность. Они превышают ожидаемую доходность компании А в 1,14 раза. Но и инвестировать в активы предприятия В рискованнее. Риск выше в 1,7 раза. Как сопоставить акции с разной ожидаемой доходностью и различным уровнем риска?

Для сопоставления активов двух компаний рассчитан коэффициент вариации доходности. Показатель для предприятия В – 50%, для предприятия А – 33%. Риск инвестирования в ценные бумаги фирмы В выше в 1,54 раза (50% / 33%). Это означает, что акции компании А имеют лучшее соотношение риск / доходность. Следовательно, предпочтительнее вложить средства именно в них.

Таким образом, коэффициент вариации показывает уровень риска, что может оказаться полезным при включении нового актива в портфель. Показатель позволяет сопоставить ожидаемую доходность и риск. То есть величины с разными единицами измерения.

  • Создать таблицу
  • Форматирование
  • Функции Excel
  • Формулы и диапазоны
  • Фильтр и сортировка
  • Диаграммы и графики
  • Сводные таблицы
  • Печать документов
  • Базы данных и XML
  • Возможности Excel
  • Настройки параметры
  • Уроки Excel
  • Макросы VBA
  • Скачать примеры

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *