Коллизия хеш-функции
Коллизией хеш-функции называется два различных входных блока данных и таких, что
Коллизии существуют для большинства хеш-функций, но для «хороших» хеш-функций частота их возникновения близка к теоретическому минимуму. В некоторых частных случаях, когда множество различных входных данных конечно, можно задать инъективную хеш-функцию, по определению не имеющую коллизий. Однако для хеш-функций, принимающих вход переменной длины и возвращающих хеш постоянной длины (таких как MD5), коллизии обязаны существовать, поскольку хотя бы для одного значения хеш-функции соответствующее ему множество входных данных (полный прообраз) будет бесконечно — и любые два набора данных из этого множества образуют коллизию.
Пример
Рассмотрим в качестве примера хеш-функцию , определённую на множестве целых чисел. Её область значений состоит из 19 элементов (кольца вычетов по модулю 19), а область определения — бесконечна. Так как множество прообразов заведомо больше множества значений, коллизии обязаны существовать.
Построим коллизию для этой хеш-функции для входного значения 38, хеш-сумма которого равна нулю. Так как функция — периодическая с периодом 19, то для любого входного значения y, значение y + 19 будет иметь ту же хеш-сумму, что и y. В частности, для входного значения 38 той же хеш-суммой будут обладать входные значения 57, 76, и т. д. Таким образом, пары входных значений (38,57), (38,76) образуют коллизии хеш-функции .
Коллизии криптографических хеш-функций
Так как криптографические хеш-функции используются для подтверждения неизменности исходной информации, то возможность быстрого отыскания коллизии для них обычно равносильна дискредитации. Например, если хеш-функция используется для создания цифровой подписи, то умение находить для неё коллизии фактически равносильно умению подделывать цифровую подпись. Поэтому мерой криптостойкости хеш-функции считается вычислительная сложность нахождения коллизии. В идеале не должно существовать способа отыскания коллизий более быстрого, чем полный перебор. Если для некоторой хеш-функции находится способ получения коллизий существенно более быстрый, чем полный перебор, то эта хеш-функция перестаёт считаться криптостойкой и использоваться для передачи и хранения секретной информации. Теоретические и практические вопросы отыскания и использования коллизий ежегодно обсуждаются в рамках международных конференций (таких как CRYPTO или ASIACRYPT), на большом количестве ресурсов Интернета, а также во множестве публикаций.
Свойства криптографических хеш-функций
Основная статья: Криптографическая хеш-функция
Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:
- Необратимость: для заданного значения хеш-функции m должно быть практически невозможно найти блок данных , для которого .
- Стойкость к коллизиям первого рода: для заданного сообщения M должно быть практически невозможно подобрать другое сообщение N, для которого .
- Стойкость к коллизиям второго рода: должно быть практически невозможно подобрать пару сообщений , имеющих одинаковый хеш.
Использование коллизий для взлома
В качестве примера можно рассмотреть простую процедуру аутентификации пользователя:
- при регистрации в системе пользователь вводит свой пароль, к которому применяется некоторая хеш-функция, значение которой записывается в базу данных;
- при каждом вводе пароля, к нему применяется та же хеш-функция, а результат сравнивается с тем, который записан в БД.
При таком подходе, даже если злоумышленник получит доступ к базе данных, он не сможет восстановить исходные пароли пользователей (при условии необратимости используемой хеш-функции). Однако, если злоумышленник умеет находить коллизии для используемой хеш-функции, ему не составит труда найти поддельный пароль, который будет иметь ту же хеш-сумму, что и пароль пользователя.
Можно использовать коллизии для подделки сообщений: информация о валютных операциях, к примеру, часто шифруется посредством хеш-функций; злоумышленник, обладая методом нахождения коллизий этой хеш-функции, может заменить сообщение поддельным и тем самым повлиять на ход валютной операции.
Схожим образом можно использовать коллизии для подделки цифровых подписей и сертификатов.
Защита от использования коллизий
Существует ряд методов защиты от взлома, защиты от подделки паролей, подписей и сертификатов, даже если злоумышленнику известны методы построения коллизий для какой-либо хеш-функции.
Одним из методов является метод «salt», применяемый при хранении UNIX-паролей — добавление некоторой последовательности символов перед хешированием. Иногда, эта же последовательность добавляется и к полученному хешу. После такой процедуры итоговые хеш-таблицы значительно сложнее анализировать, а так как эта последовательность секретна, существенно повышается сложность построения коллизий — злоумышленнику должна быть также известна последовательность «salt».
Другим методом является конкатенация хешей, получаемых от двух различных хеш-функций. При этом, чтобы подобрать коллизии к хеш-функции , являющейся конкатенацией хеш-функций и , необходимо знать методы построения коллизий и для , и . Недостатком конкатенации является увеличение размера хеша, что не всегда приемлемо в практических приложениях.
Методы поиска коллизий
Одним из самых простых и универсальных методов поиска коллизий является атака «дней рождения». С помощью этой атаки отыскание коллизии для хеш-функции разрядности битов потребует в среднем около , можно вычислить ; которая, для некоторых хеш-функций, работает даже при обеспечении стойкости к коллизиям первого рода, стойкости к коллизиям второго рода, а также свойства необратимости. Подразумевается, что нет необходимости знать , а достаточно знать лишь его хеш. Таким образом можно, например, дописывать дополнительную информацию к чужому сообщению. Для предотвращения этой атаки используют различные методы: добавляют дополнительный раунд при хешировании, отличный от предыдущих; применяют многократное хеширование; или используют комбинацию предыдущих 2х методов.
Но атаку расширения можно рассмотреть и с другой стороны: если у нас есть некоторое сообщение , и хэш-функция уязвима к атаке расширения, то легко можно найти коллизию первого рода: , , , то есть нарушается свойство стойкости к коллизиям первого рода.
Большая часть современных хеш-функций имеют одинаковую структуру, основанную на разбиении входного текста на блоки и последующем итерационном процессе, в котором на каждой итерации используется некоторая функция , где x — очередной блок входного текста, а y — результат предыдущей операции. Однако такая схема несовершенна, так как, зная функцию , можно проводить анализ данных в промежутках между итерациями, что облегчает поиск коллизий.
Часто нахождению коллизий хеш-функций предшествует нахождение её псевдоколлизий, то есть двух разных значений начального буфера, которые для одного и того же сообщения дают равные значения хеш-функции.
Коллизии хеш-функций MD4 и MD5
Основная статья: MD5#Коллизии MD5
В 1996 году Ганс Доббертин нашёл псевдоколлизии в MD5, используя определённые инициализирующие векторы, отличные от стандартных. Оказалось, что можно для известного сообщения построить второе, такое, что оно будет иметь такой же хеш, как и исходное. C точки зрения математики это означает: MD5(IV,L1) = MD5(IV,L2), где IV — начальное значение буфера, а L1 и L2 — различные сообщения.
В 2004 году китайские исследователи Ван Сяоюнь (Wang Xiaoyun), Фэн Дэнго (Feng Dengguo), Лай Сюэцзя (Lai Xuejia) и Юй Хунбо (Yu Hongbo) объявили об обнаруженной ими уязвимости в алгоритме, позволяющей за небольшое время (1 час на сервере IBM p690 (англ.) русск. ) находить коллизии.
В 2005 году исследователи Ван Сяоюнь и Юй Хунбо из университета Шаньдуна в Китае, опубликовали алгоритм для поиска коллизий в хеш-функции MD5, причём их метод работает для любого инициализирующего вектора, а не только для вектора, используемого по стандарту. Применение этого метода к MD4 позволяет найти коллизию меньше чем за секунду. Он также применим и к другим хеш-функциям, таким как RIPEMD и HAVAL.
В 2008 году Сотиров Александр, Марк Стивенс (Marc Stevens), Якоб Аппельбаум (Jacob Appelbaum) опубликовали на конференции 25th Chaos Communication Congress статью, в которой показали возможность генерирования поддельных цифровых сертификатов, на основе использования коллизий MD5.
Коллизии хеш-функции SHA-1
Основная статья: SHA-1#Криптоанализ
В январе 2005 года Винсент Рэймен и Elisabeth Oswald опубликовали сообщение об атаке на усеченную версию SHA-1 (53 раунда вместо 80), которая позволяет находить коллизии меньше, чем за 2 80 операций.
В феврале 2005 года Ван Сяоюнь, Лиза Инь Ицюнь и Юй Хунбо представили атаку на полноценный SHA-1, которая требует менее 2 69 операций.
В августе 2005 года на CRYPTO 2005 эти же специалисты представили улучшенную версию атаки на полноценный SHA-1, с вычислительной сложностью в 2 63 операций. В декабре 2007 года детали этого улучшения были проверены Мартином Кохраном.
Кристоф де Каньер и Кристиан Рехберг позже представили усовершенствованную версию атаки на SHA-1, за что были удостоены награды за лучшую статью на конференции ASIACRYPT 2006. Ими была представлена двух-блоковая коллизия на 64-раундовый алгоритм с вычислительной сложностью около 2 35 операций.
Ввиду того, что теоретические атаки на SHA-1 оказались успешными, NIST планирует полностью отказаться от использования SHA-1 в цифровых подписях.
Коллизии других хеш-функций
Хеш функции RIPEMD и HAVAL также являются уязвимыми к алгоритму поиска коллизий MD5, опубликованному Ван Сяоюнь (Wang Xiaoyun), Фен Дэнгуо (Feng Dengguo), Лай Сюэцзя (Lai Xuejia) и Юй Хунбо (Yu Hongbo) в 2004 году.
Для второй модификации хеш-функции WHIRLPOOL, называемой Whirlpool-T, на 2009 год не предложено алгоритмов поиска коллизий или псевдоколлизий; существенным ограничением для их нахождения является сложность самой функции и большая длина (512 бит) выходного ключа.