что значит x принадлежит R?
значит R -любое число
или
Ну это значит что R имеет х.
Не совсем любое число, без мнимых
Значит x принадлежит промежутку от минус бесконечности до плюс. Любые вещественные числа
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.
Как записать ответ неравенства
В этом уроке мы не будем разбирать, как решаются линейные или квадратные неравенства. Нас будет интересовать только вопрос: «Как записать ответ неравенства специальными математическими знаками,
например, в виде x ∈ (3; +∞) ?».
Стоит отметить, что далеко не во всех учебных заведениях требуют обязательно записывать ответ неравенства в виде x ∈ (3; +∞) . В некоторых школах в 8 и 9 классе разрешают оставлять ответ, используя знаки
больше « > » и « ». Например, следующим образом.
Ответ: x > 3
Впрочем, мы рекомендуем освоить запись ответа неравенства в математических обозначениях сразу, так как в любом случае в старшей школе и затем в университете будут требовать именно такую запись ответа.
Перед разбором, как записывать ответ неравенства математическими знаками, вспомним расшифровку и обозначение этих знаков.
Знак | Расшифровка |
---|---|
∈ | «Принадлежит» |
Легко запомнить знак, как зеркальное отображение русской буквы « Э » или как символ евро « € », но только с одной палочкой посередине.
Перейдем к непосредственной записи ответа неравенства. Рассмотрим и решим линейное неравенство.
x − 6 > 8
x > 6 + 8
x > 14
Мы решили линейное неравенство, теперь запишем его ответ с помощью математических знаков.
Важно!
Перед тем, как записывать ответ неравенства, обязательно изобразите его на числовой оси.
Итак, мы изобразили ответ неравенства на числовой оси. После этого запишем слово «Ответ:» и за ним запишем « x ∈ ». Такая запись читается как «икс принадлежит».
Взглянув на рисунок ответа на числовой оси, мы видим, что область решений начинается с числа « 14 ». Число « 14 » не входит в область решений («пустая» точка на оси). Значит, используем круглую скобку.
Ответ: x ∈ (14; …
Нам остается понять, где заканчивается область решений справа. Правильный ответ — справа область заканчивается в положительной бесконечности « + ∞ ».
На числовой оси на обоях краях слева и справа соответственно расположены «минус» и «плюс» бесконечности. Как правило, их не рисуют на числовой оси лишний раз, т.к. их наличие на оси подразумевается.
Запишем окончательный ответ.
Ответ: x ∈ (14; + ∞)
Запомните!
Знаки « + ∞ » и « − ∞ » всегда записываются с круглыми скобками.
Разберем другой пример.
−7x ≥ 56
−7x ≥ 56 | :(−7)
x ≤ 8
Также как и в предыдущем примере всегда начинаем записывать
ответ с записи « x ∈… ».
В ответе « x ≤ 8 » область решений начинается с « − ∞ » и заканчивается на « 8 », которое входит в ответ. Значит, « 8 » будет с квадратной скобкой. Так и запишем в ответе.
Ответ: x ∈ (− ∞; 8]
Запись ответа неравенства для квадратных неравенств
При решении квадратных неравенств часто может получаться несколько интервалов в ответе. Разберемся, как их записывать в ответ. Рассмотрим пример квадратного неравенства и его решение.
3 ± √ 9 − 8 |
2 |
Х любое число как записать
В первом задании мы рассмотрели линейные уравнения с одной переменной. Например, уравнения `2x+5=0`, `3x+(8x-1)+9=0` являются линейными уравнениями с переменной `x`. Уравнение, содержащее переменные `x` и `y`, называется уравнением с двумя переменными. Например, уравнения `2x-3=5`, `x^2+xy-y^2=7` являются уравнениями с двумя переменными.
Уравнение вида `ax+by=c` называется линейным уравнением с двумя переменными, где `x` и `y` переменные, `a`, `b`, `c` — некоторые числа.
Например, уравнения `2x+y=3`, `x-y=0` являются линейными уравнениями с двумя переменными.
Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.
Например, `x=3`, `y=4` является решением уравнения `2x+3y=18`, будем эту пару чисел записывать так `(3;4)`. Очевидно, что пара чисел `(4;3)` не является решением уравнения, т. к. `2*4+3*3=17!=18`. При нахождении решений с двумя переменными на первом месте в паре чисел пишем значение для переменной `x`, а на втором месте – значение переменной `y`.
Если каждое решение одного уравнения является решением второго уравнения и обратно, то данные уравнения называются равносильными. Например, решения уравнений `2x+y=3` и `4x+2y=6` совпадают, следовательно, эти уравнения равносильные.
Справедливы следующие правила при решении уравнений с двумя переменными:
1) если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;
2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.
Укажите три различных решения для уравнения `3x+y-2=0`.
Если `x=0`, то `y=2`; если `y=0`, то `x=2/3`; если `x=1`, то `y=-1`.
Таким образом, пары чисел `(0;2)`, `(2/3;0)`, `(1;-1)` являются решениями данного уравнения. Заметим, что данное уравнение имеет бесконечно много решений. Для заданного значения `x` значение `y=2-3x`, т. е. любая пара чисел `(x;2-3x)`, где `x` — любое число, является решением уравнения.
Рассмотрим координатную плоскость `Oxy` и отметим на ней все точки `(x,y)`, для которых пара чисел `x` и `y` является решениями уравнения. Например, рассмотрим уравнение `y=2`. Этому уравнению удовлетворяют все пары чисел `(x;2)`.Точки, для которых `x` — любое число, а `y=2`, лежат на прямой `y=2`. Эта прямая параллельна оси `x` и проходит через точку `(0;2)` (см. рис. 1).
Рассмотрим уравнение `x=3`. Каждая пара чисел, являющаяся решением данного уравнения, изображается точкой с координатами `x` и `y` на координатной плоскости `Oxy`. Решениями данного уравнения являются пары чисел `(3;y)`. Точки с координатами `x=3` и `y` лежат на прямой `x=3`, эта прямая параллельна оси `Oy` и проходит через точку `(3;0)` (см. рис. 2).
Графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых являются решениями данного уравнения.
На рис. 1 графиком уравнения является прямая `y=2`, на рис. 2 графиком уравнения является прямая `x=3`.
Рассмотрим теперь уравнение `2x+3y-1=0`. Выразим переменную `y` через `x`, получаем `y=1/3-2/3x`, это уравнение задаёт линейную функцию, и нам известно, что её графиком является прямая. Чтобы построить эту прямую, достаточно рассмотреть две точки, координаты которых удовлетворяют уравнению, а затем через эти две точки провести прямую. При `x=0` `y=1/3` и при `x=1/2` `y=0`. График данного уравнения приведён на рис. 3.
Рассмотрим уравнение `(x-4)(x+y-4)=0`. Произведение двух скобок равно нулю, каждая скобка может равняться нулю. Наше уравнение распадётся на два уравнения: `x=4` и `x+y-4=0`. Графиком первого уравнения является прямая, параллельная оси `Oy` и проходящая через точку `(4;0)`. Графиком второго уравнения является график линейной функции `y=4-x`, эта прямая проходит через точки `(4;0)` и `(0;4)`. График данного уравнения приведён на рис. 4.
Постройте график уравнения `|x|+|y|=1`.
Этот пример можно решать двумя способами. Пусть `x>=0` и `y>=0`, точки с такими координатами лежат в первой четверти. Получаем уравнение `x+y=1`, так как `|x|=x` и `|y|=y`. Графиком данного уравнения является прямая, проходящая через точки `A(1;0)` и `B(0;1)`. Графику исходного уравнения принадлежат точки полученной прямой, лежащие в первой четверти, т. е. графику принадлежат точки отрезка `AB`, где `A(1;0)` и `B(0;1)`.
Этот пример можно решать другим способом. Пусть `y>=0`, тогда наше уравнение эквивалентно уравнению `y=1-|x|`. В первом задании мы строили график функции `y=|x|` (см. рис. 6). График функции `y=-|x|` получается зеркальным отражением относительно оси `Ox` графика функции `y=|x|` (см. рис. 7). График функции `y=1-|x|` получается из графика функции `y=-|x|` сдвигом вдоль оси `Oy` на единицу вверх (см. рис. 8). У полученного графика рассматриваем только точки, для которых `y>=0`. Получим ломаную `ABC` с рис. 5.
Найдите все решения уравнения `xy=6`, для которых `x` и `y` являются натуральными числами.
Очевидно, что натуральные числа `x` и `y` являются делителями числа `6`. Поэтому `x` и `y` могут принимать значения `1;` `2;` `3;` `6`. Следовательно, искомыми решениями являются числа `(1;6)`, `(2;3)`, `(3;2)`, `(6;1)`.
Найти все решения уравнения `x^2+4x=y^2+2y+8`, для которых значения `x` и `y` являются целыми числами.
Обычно такие примеры формулируют так: найти все решения данного уравнения в целых числах.
Преобразуем данное уравнение: `x^2+4x+4-4=y^2+2y+1+7`,
Если `x` и `y` целые числа, то выражения, стоящие в скобках, являются целыми числами. А это могут быть числа `+-1` и `+-11`. Решаем `4` системы уравнений:
Решая эти системы, получаем `4` решения: `(4;4)`, `(4;-6)`, `(-8;-6)`, `(-8;4)`.
Решение линейных неравенств
Неравенство это выражение с , ≤, или ≥. Например, 3x — 5 a, b, и c :
Принцип прибавления неравенств: Если a 0 верно, тогда ac bc также верно.
Подобные утверждения также применяются для a ≤ b.
Когда обе стороны неравенства умножаются на отрицательное число, необходимо полностью изменить знак неравенства.
Неравенства первого уровня, как в примере 1 (ниже), называются линейными неравенствами.
Пример 1 Решите каждое из следующих неравенств. Затем изобразите множество решений.
a) 3x — 5 1. Постройте график множества решений.
Решение У нас есть
2x — 5 ≤ -7 или 2x — 5 > 1. | Прибавляем 5 |
2x ≤ -2 или 2x > 6 | Делим на 2 |
x ≤ -1 или x > 3. |
Множество решений или x > 3>. Мы можем также написать решение с использованием обозначения интервала и символ для объединения или включения обоих множеств: (-∞ -1] (3, ∞). График множества решений изображен ниже.
Для проверки, нарисуем y1 = 2x — 5, y2 = -7, и y3 = 1. Заметьте, что для или x > 3>, y1 ≤ y2 или y1 > y3.
Неравенства с абсолютным значением (модулем)
Неравенства иногда содержат модули. Следующие свойства используются для их решения.
Для а > 0 и алгебраического выражения x:
|x| a эквивалентно x a.
Подобные утверждения и для |x| ≤ a и |x| ≥ a.
Например,
|x| Доход от плана B больше, чем доход от плана A .
3. Решим неравенство:
20n > 250 + 10n | Вычитаем 10n из двух сторон |
10n > 250 | Делим на 10 обе стороны |
n > 25 |
4. Проверка. Для n = 25 выплаты согласно плану A составят: \$250 + \$10,25, или \$250 + \$250, или \$500, и выплаты согласно плану B составят \$20,25, или \$500. То есть, для работы длительностью менее 25 часов, доход одинаков для каждого плана. Согласно плану B выплаты больше для работы, которая занимает больше 30-и часов. Так как 30 > 25, это обеспечивает частичную проверку результата, но мы не можем проверить все значения n.
5. Вывод . Для значений, n больше, чем 25 часов, план B является лучшим.
Электронная почта:
Об авторе
© 2005 — 2024
Копирование запрещено! В случае копирования администрация сайта обратится в компетентные органы.